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SUMMARY 

The ser ies  describing the perturbations in the orbital 
elements of an artificial satellite due to solar and lunar 
tides a r e  presented in a form convenient for computation. 
In addition, the potential function and its gradient a r e  given 
in t e rms  of rectangular coordinates. 
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LIST O F  SYMBOLS 

A - coefficient of trigonometric term in the determining function 

AP - coefficient of trigonometric t e rm in the disturbing function 

Auo - factor in the coefficient of the trigonometric t e r m  of the determining function depending 
only on the inclination of the satellite orbit plane to the equator 

a - semi-major axis of the satellite 

Cqt - coefficient of trigonometric t e rm depending on the semi-major axis, the eccentricity 
of the satellite, and the mean motion of the argument of the trigonometric t e rm 

c - cosine of half the angle of inclination of satellite orbit plane to the equator 

e - eccentricity of the satellite 

G - Delaunay variable conjugate to argument of perigee of satellite 

g - argument of perigee of satellite 

H - Delaunay variable conjugate to right ascension of node of satellite 

h - Delaunay symbol for right ascension of the node - same as n 

I - inclination of satellite orbit plane to the equator 

I ' - inclination of orbit of disturbing body to the equator 

i ' - index associated with mean anomaly of disturbing body 

J,  - second zonal harmonic of earth 

k, - Love number 

L - Delaunay variable conjugate to mean anomaly of satellite 

8 - mean anomaly of satellite 

.e'* - mean anomaly of disturbing body, includingphase angle due to tidal friction 

8, - mean anomaly of the moon 

8, - mean anomaly of the sun 

m' - ratio of mass  of disturbing body to the sum of the mass of the disturbing body and the 
mass of the earth 

n - mean motion of the satellite 

n '  - mean motion of the disturbing body 

q'  - index associated with argument of perigee of the disturbing body 

R - mean radius of earth 

RP - periodic part of the disturbing function 
. ,- 

r - geocentric distance of the satellite 
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S - determining function for solar m d  lunar tides 

II - coefficient of trigonometric t e rm in the determining function depending on elements of Tq# 
disturbing body only 

a - argument in the disturbing function 

h -  mean motion of a 
* *  * *  P c ,  P, - geocentric angles between r and rc  , r D  

y - sine of one half the angle of inclination of satellite orbit to the equator 

I E - phase lag due to tides associated with the right ascension 
I 

K~ - phase angle associated with mean anomaly of the moon due to tidal friction 

K T phase angle associated with mean anomaly of the sun due to tidal friction 

II - index associated with right ascension of the node 

0- right ascension of the satellite 

a, - right ascension of the moon 

A - mean motion of 

a,- mean motion of Qc 

L' - argument of perigee of disturbing body 

B - difference of right ascension of the satellite and the disturbing body, including the phase 
lag E 

B - mean motion of e 
LL - product of gravitational constant and mass of the earth 

kZ - gravitational constant 
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EFFECTS OF THE SOLAR AND LUNAR TIDES ON THE 

MOTION OF AN ARTIFICIAL EARTH SATELLITE 

1 

INTRODUCTION 
- 

In References 1 and 2, it has been shown that solar and lunar tides may cause perturbations 
in the trajectories of satellites; also, the disturbing potential which describes the variation of the 
earth's geoid with time has been discussed. 

In this report, a determining function corresponding to the disturbing function for the tides is 
introduced, from which perturbations in the orbital elements a r e  derived. The perturbations are 
given in a form suitable for programming. 

It is also useful to have available the formulation of the potential function and its gradient in 
terms of rectangular coordinates. These are  presented in the last section. 

THE DETERMINING FUNCTION 

The periodic part  of the disturbing function is given in Reference 1 in the form 

R~ = ~ A ~ C O S ~  , 

where AP is a function of the coordinate elements of the satellite and the disturbing body, and a is 
defined by 

Here, q ' ,  i ' ,  and v are integers defining the indices of the summation (1). The index q' takes 
on only two values, zero and two, and thus generates Tables 1 and 2 at the end of the report. When 
q'  equals zero, i ' takes the values -1, 0, and 1, while v takes on the values 0, 1, and 2. When q' 

equals two, i '  assumes the values -1, -2, -3, and -4, while v varies from -2 to +2. The case when 
all three integers are zero simultaneously leads to secular terms and is discussed in Reference 1. 

W 

. -  

The angular variables in Equation (2) are  defined by 

.e'* = tc - K~ for  the moon B = R - R, - E for the moon 

.e'* = xe0 - K~ for  the sun e = R - E f o r  the sun , 
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where 

8, = mean anomaly of the moon 

4, = mean anomaly of the sun 

a, = right ascension of the node of the moon 

= right ascension of the node of the satellite 

0' = argument of perigee of the disturbing body 

K K ,, E are phase angles due to tidal friction. 

From Equation (l), we find by the methods of Reference 3, for example, that the first order 
determining function S is given by 

S = Z A s i n r r  

where 

A = Ap/h 

h = mean motion of a .  

The quantity A in Equation (4) may be decomposed into the factors 

A k ,  R5 n ' *  m' TqlitV A,, Cqli(, , 

(4 

(5) 

where 

k ,  = Love number (approximately .3) 

R = mean radius of the earth 

n '  = mean motion of the disturbing body 

m' = ratio of the mass of the disturbing body to the sum of the mass of the disturbing body 
and the mass of the earth. 

The function T q l i ~ ,  is independent of the elements of the satellite and is given by the formula 

Abq, and B l t q t  are functions of the elements of the disturbing body only and are given in Table 1 for 
q' = 0 and Table 2 for q' = 2. 

Avo is a function of y only, where 

T 

y s i n ?  

2 

(7 
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and I is the inclination of the orbit plane to the earth's equator. Avo is given in Tables 1 and 2 for  
the appropriate ranges of the index v. Cg t i  tu  can be written explicitly as 

1 
CqIi lv  = 

a 3  (1 - h ' 

. I -  

where a and e a r e  the semi-major axis and eccentricity of the satellite. The motion h is given by 

where n ' ,  &' , and 6 a r e  the mean motions of $ I * ,  w', and 8 defined previously. Also, 

. .  6 = R - fl, f o r  the moon 

= h for the sun 

where 

J ,  = second zonal harmonic of earth's potential 

n = mean motion of the satellite. 

THE PERTURBATIONS I N  THE ELEMENTS 

If we introduce the Delaunay variables: 

L (pa)'" 

G = ~ ( i  - e ~ ) l ' ~  

H = G cos I 

4 = mean anomaly of the satellite 

g = argument of perigee of the satellite 

h = R = right ascension of the node of the satellite, 

- *  

.t 
where P = product of the gravitational constant and the mass of the satellite, we can derive the 
perturbations in the elements from the determining function defined by Equation 4 .  
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From the theory of canonical variables, and since the determining function S is independent 
of 4 and g ,  the Delaunay variables L and G (and consequently a and e )  are not affected by the solar 
G r  l u n a r  tides. The perturbations in the remaining elements a r e  given by 

~ 

From the definition of C q l i l u  given in (8) and the Equations (14), we find 

L 

v Tql i lu  Avo C q i i l u  cos a c 6H = - n a' (1 - e ' )  "' s i n  I 6 1  = + k, Rs n '  ' m '  

J 

L J 

In order to facilitate deriving differential coefficients, it is useful to note that Equation (11) in 
t e rms  of Delaunay variables becomes 

From Equations (2), (5), and (13) we find 

3- 

J L  aL n a' 
i2 a n  - - - =  - -  a h  _ -  

h ah - ah 5v 

ah - ah 

- - - - = -  
dG ac n a' (I -e')"' 

v h .  - - v - =  
a H  a H  n a' (I -e ' ) ' / '  cos I 

dCql i 'y  - Cq 1 i ' u  

(3 - 5v ;) n a' (I  -e')"' 

- C q ~ i ~ u  n 
v, * 

acqlil,, 
d H  n a' (1 -e')"' cos  I a 

4 
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Furthermore, since Avo is a function of y only, we have 

a A, 0 - -  - 0  dL 

where c = cos I / 2 .  

Combining the above results, the perturbations in the elements can be written in the form 

64 = F ( 1 - e 2 ) 1 ’ 2  c? a ( l - v ~ ) T q ~ i ~ v A v o s i n u  a 

where F is the constant introduced in Reference 1 and is given by 

k , R 5  n i 2 m ’  

,a5 (I - e’)’ 
F =  

THE DISTURBING FUNCTION AND ITS GRADIENT I N  RECTANGULAR COORDINATES 

Neglecting the parallactic part, the disturbing function due to tidal effects is 

k Z R 5  k 2  ma u* = 

5 



With respect to a n  orthogonal, earth-centered inertial coordinate system where the z-axis coin- 
cides with the earth's axis of rotation, let  

Then, 

Thus, 
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1 - 6 y 2  + 6y4 

CY (1 - 2Y2) 

c2 y2 

B;tql 

Table 1 

( q '  = 0) 

-12y (1 - 2y2) 

C -  (1 - 8y2 + 8y4)  

2Y (1  - 2Y2) 

V 

* u  

1 
7 (1 - 6y'  + 6 ~ ' ~ )  

3c'  y '  (1  - 2 y ' 2 )  

3c '2  y ' 2  

3 
2 
- c 1 4  

-3c'3 y '  

+ c 1 2 y ' 2  

3c' y ' 3  

2 Y J 4  
3 - 

3 
y e '  

1 

3 7 e '  

Av 0 

Table 2 

(4' = 2) 

U 

e 2  y 2  

CY (1 - 2Y2) 

1 - 6y2  + 6y4 

CY (1  - 2Y2) 

c2 y2 

B;lql 

e '  
2 

_ -  

1 

7 7 e '  

2Y (1 - 2Y2) 

c - l  (1  - 8y2  + 8y4)  

-12y (1  - 2y2) 

c - l  (1 - 8y2  t 8y4)  

2 Y ( l  - 2Y2) 

i' 

-1 

0 

1 

-2  

-1 

0 

1 

2 

i '  
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